Deficiency of the ribosome biogenesis gene Sbds in hematopoietic stem and progenitor cells causes neutropenia in mice by attenuating lineage progression in myelocytes.

نویسندگان

  • Noemi A Zambetti
  • Eric M J Bindels
  • Paulina M H Van Strien
  • Marijke G Valkhof
  • Maria N Adisty
  • Remco M Hoogenboezem
  • Mathijs A Sanders
  • Johanna M Rommens
  • Ivo P Touw
  • Marc H G P Raaijmakers
چکیده

Shwachman-Diamond syndrome is a congenital bone marrow failure disorder characterized by debilitating neutropenia. The disease is associated with loss-of-function mutations in the SBDS gene, implicated in ribosome biogenesis, but the cellular and molecular events driving cell specific phenotypes in ribosomopathies remain poorly defined. Here, we established what is to our knowledge the first mammalian model of neutropenia in Shwachman-Diamond syndrome through targeted downregulation of Sbds in hematopoietic stem and progenitor cells expressing the myeloid transcription factor CCAAT/enhancer binding protein α (Cebpa). Sbds deficiency in the myeloid lineage specifically affected myelocytes and their downstream progeny while, unexpectedly, it was well tolerated by rapidly cycling hematopoietic progenitor cells. Molecular insights provided by massive parallel sequencing supported cellular observations of impaired cell cycle exit and formation of secondary granules associated with the defect of myeloid lineage progression in myelocytes. Mechanistically, Sbds deficiency activated the p53 tumor suppressor pathway and induced apoptosis in these cells. Collectively, the data reveal a previously unanticipated, selective dependency of myelocytes and downstream progeny, but not rapidly cycling progenitors, on this ubiquitous ribosome biogenesis protein, thus providing a cellular basis for the understanding of myeloid lineage biased defects in Shwachman-Diamond syndrome.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel mouse model provides insights into the neutropenia associated with the ribosomopathy Shwachman-Diamond syndrome.

Artistic representation of the interleukin-7 receptor complex in the plasma membrane of a cell. Editorials 1237 A novel mouse model provides insights into the neutropenia associated with the ribosomopathy Shwachman-Diamond syndrome 1240 JAK kinase targeting in hematologic malignancies: a sinuous pathway from identification of genetic alterations towards clinical indications Lorraine Springuel, ...

متن کامل

SBDS Expression and Localization at the Mitotic Spindle in Human Myeloid Progenitors

BACKGROUND Shwachman-Diamond Syndrome (SDS) is a hereditary disease caused by mutations in the SBDS gene. SDS is clinically characterized by pancreatic insufficiency, skeletal abnormalities and bone marrow dysfunction. The hematologic abnormalities include neutropenia, neutrophil chemotaxis defects, and an increased risk of developing Acute Myeloid Leukemia (AML). Although several studies have ...

متن کامل

Notchless-dependent ribosome synthesis is required for the maintenance of adult hematopoietic stem cells

Blood cell production relies on the coordinated activities of hematopoietic stem cells (HSCs) and multipotent and lineage-restricted progenitors. Here, we identify Notchless (Nle) as a critical factor for HSC maintenance under both homeostatic and cytopenic conditions. Nle deficiency leads to a rapid and drastic exhaustion of HSCs and immature progenitors and failure to maintain quiescence in H...

متن کامل

Blastema from rabbit ear contains progenitor cells comparable to marrow derived mesenchymal stem cells

Rabbits have the capacity to regenerate holes in their ears by forming a blastema, a tissue that is made up of a group of undifferentiated cells. The purpose of the present study was to isolate and characterize blastema progenitor cells and compare them with marrow mesenchymal stem cells (MSCs). Five New Zealand white male rabbits were used in the present study. A 2-mm hole was created in the a...

متن کامل

The ribosome-related protein, SBDS, is critical for normal erythropoiesis.

Although anemia is common in Shwachman- Diamond syndrome (SDS), the underlying mechanism remains unclear. We asked whether SBDS, which is mutated in most SDS patients, is critical for erythroid development. We found that SBDS expression is high early during erythroid differentiation. Inhibition of SBDS in CD34(+) hematopoietic stem cells and early progenitors (HSC/Ps) and K562 cells led to slow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Haematologica

دوره 100 10  شماره 

صفحات  -

تاریخ انتشار 2015